Large Scale Structural Optimization Using Genetic
نویسندگان
چکیده
This thesis explores novel parameterization concepts for large scale topology optimization that enables the use of evolutionary algorithms in large-scale structural design. Specifically, two novel parameterization concepts based on generative algorithms and Boolean random networks are proposed that facilitate systematic exploration of the design space while limiting the number of design variables. The presented methodology is demonstrated on classical planar and space truss optimization problems. A nested optimization methodology using genetic algorithms and sequential linear programming is also proposed to solve truss optimization problems. Further, a number of heuristics are also presented to perform the parameterization efficiently. The results obtained on solving the standard truss optimization problems are very encouraging.
منابع مشابه
A HYBRID MODIFIED GENETIC-NELDER MEAD SIMPLEX ALGORITHM FOR LARGE-SCALE TRUSS OPTIMIZATION
In this paper a hybrid algorithm based on exploration power of the Genetic algorithms and exploitation capability of Nelder Mead simplex is presented for global optimization of multi-variable functions. Some modifications are imposed on genetic algorithm to improve its capability and efficiency while being hybridized with Simplex method. Benchmark test examples of structural optimization with a...
متن کاملCOMPUTATIONALLY EFFICIENT OPTIMUM DESIGN OF LARGE SCALE STEEL FRAMES
Computational cost of metaheuristic based optimum design algorithms grows excessively with structure size. This results in computational inefficiency of modern metaheuristic algorithms in tackling optimum design problems of large scale structural systems. This paper attempts to provide a computationally efficient optimization tool for optimum design of large scale steel frame structures to AISC...
متن کاملA TWO-STAGE DAMAGE DETECTION METHOD FOR LARGE-SCALE STRUCTURES BY KINETIC AND MODAL STRAIN ENERGIES USING HEURISTIC PARTICLE SWARM OPTIMIZATION
In this study, an approach for damage detection of large-scale structures is developed by employing kinetic and modal strain energies and also Heuristic Particle Swarm Optimization (HPSO) algorithm. Kinetic strain energy is employed to determine the location of structural damages. After determining the suspected damage locations, the severity of damages is obtained based on variations of modal ...
متن کاملA Mathematical Modeling for Plastic Analysis of Planar Frames by Linear Programming and Genetic Algorithm
In this paper, a mathematical modeling is developed for plastic analysis of planar frames. To this end, the researcher tried to design an optimization model in linear format in order to solve large scale samples. The computational result of CPU time requirement is shown for different samples to prove efficiency of this method for large scale models. The fundamental concept of this model is ob...
متن کاملSTRUCTURAL SYSTEM RELIABILITY-BASED OPTIMIZATION OF TRUSS STRUCTURES USING GENETIC ALGORITHM
Structural reliability theory allows structural engineers to take the random nature of structural parameters into account in the analysis and design of structures. The aim of this research is to develop a logical framework for system reliability analysis of truss structures and simultaneous size and geometry optimization of truss structures subjected to structural system reliability constraint....
متن کامل